Franck VERMET
Maître de Conférences
Adress
:
E-mail
:
franck.vermet@univ-brest.fr
Laboratoire de Mathématiques de Bretagne Occidentale
Université de Bretagne Occidentale
Office Phone: +33(0)2 98 01 66 56
6, Avenue Victor Le Gorgeu
Fax:
+33(0)2 98 01 61 28
CS 93837
Linkedin : Franck Vermet
29238 BREST Cedex 3
Research Gate : Franck Vermet
FRANCE
Office:
N045bis (EURIA)
Research Interests :
My
research interests are in the area of Probability Theory. More
precisely :
Statistical Physics, statistical learning, neural networks, associative memory,
Hopfield model.
Actuarial science.
Stochastic algorithms, Monte Carlo methods.
Multiuser communication Theory.
Random walks.
Preprints :
A. Charpentier, L. Kouakou, M. Löwe, Ph. Ratz, F. Vermet, Collaborative Insurance Sustainability and Network Structure. (2021) (arXiv:2107.02764)
D. Delcaillau, A. Ly, A. Papp, F. Vermet, Model Transparency and Interpretability : Survey and Application to the Insurance Industry. (2020)
D. Delcaillau, A. Ly, A. Papp, F. Vermet, Interpretabilité des modèles : état des lieux des méthodes et application à l'assurance. (2020) (arXiv:2007.12919)
Research Papers :
Th. Giraudon, V. Gripon, M. Löwe, F. Vermet, Towards an Intrinsic Definition of Robustness for a Classifier. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4015-4019 (2021) (doi: 10.1109/ICASSP39728.2021.9414573) (arXiv:2006.05095)
(https://2021.ieeeicassp.org/)
P. Papadimitroulas, L. Brocki, N. C. Chung, W.
Marchadour, F. Vermet, L. Gaubert, V. Eleftheriadis, D. Plachouris,
D. Visvikis, G. C. Kagadis, M. Hatt, Artificial Intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Physica Medica, 83, 108-121 (2021) (https://doi.org/10.1016/j.ejmp.2021.03.009)
V. Gripon, M. Löwe, F. Vermet, Some Remarks on Replicated Simulated Annealing.
J. Stat. Phys. 182, 51 (2021) (https://doi.org/10.1007/s10955-021-02727-z)
(arXiv:2009.14702)
M. Löwe, K. Schubert, F. Vermet, Multi-group
Binary Choice with Social Interaction and a Random Communication
Structure - a Random Graph Approach. Physica A: Stat. Mech. Appl. 556, 124735 (2020) (arXiv:1904.11890)
V. Gripon, G. B. Hacene, M. Löwe, F. Vermet, Improving Accuracy of Nonparametric
Transfer Learning via Vector Segmentation. IEEE
ICASSP 2018, 2966-2970 (2018) (arXiv:1710.08637)
V. Gripon, M. Löwe, F. Vermet, Associative
Memories to Accelerate Approximate Nearest Neighbor Search.
Appl. Sci. 8(9), 1676 (2018) (Open Access)
M. Demircigil, J. Heusel, M. Löwe, S. Upgang, F. Vermet, On a model of associative memory with huge
storage capacity.
J. Stat. Phys. 168 (2), 288-299 (2017) (arXiv:1702.01929)
V. Gripon, J. Heusel, M. Löwe, F. Vermet, A comparative study of sparse associative
memories. J. Stat. Phys. 164 (1), 105-129
(2016) (arXiv:1512.08892)
J. Heusel, M. Löwe, F. Vermet, On
the capacity of a new model of associative memory based on neural
cliques. Stat. & Prob. Lett., 106, 256-261 (2015) (arXiv:1411.1224)
M. Löwe, F. Vermet, Capacity of
an associative memory model on random graph architectures.
Bernoulli 21 (3), 1884-1910 (2015) (arXiv:1303.4542)
M. Ebbers, H. Knöpfel, M. Löwe, F. Vermet, Mixing times for the Swapping
Algorithm on the Blume-Emery-Griffiths Model. Random Structures
& Algorithms 45 (1), 38-77 (2014) (arXiv:1206.4162)
C. Wright, R. B. Scott, D. Furnival, P. Ailliot, F. Vermet, Global Observations of Ocean-Bottom
Subinertial Current Dissipation. Journal of Physical
Oceanography 43 (2), 402-417 (2013)
M. Löwe, F. Vermet, The
Hopfield model on a sparse
Erdös-Renyi graph. J. Stat. Phys. 143,
205-214 (2011)
M. Löwe, F. Vermet, The
swapping algorithm for the Hopfield model with two patterns. Stochastic
Process. Appl.
119 (10), 3471-3493 (2009).
M. Löwe, F. Vermet, Capacity
bounds for the CDMA system and a neural network : a moderate
deviations approach. ESAIM Probab. Stat. 13,
343- 362 (2009).
M. Löwe, F. Vermet, The
Capacity of q-state Potts neural networks with Parallel
Retrieval Dynamics. Stat. & Prob.
Lett. 77, 1505-1514 (2007).
R. van der Hofstad, M. Löwe, F. Vermet, The effect of system load on the
existence of bit-errors in CDMA with and without parallel interference
cancelation. IEEE Transactions on Information
Theory 52, 4733-4741 (2006).
M.
Löwe, F. Vermet, The
storage capacity of the Hopfield model
and
moderate deviations. Stat. & Prob. Lett., 75,
237-248 (2005).
M. Löwe, F. Vermet, The
storage capacity of the
Blume-Emery-Griffiths neural network. J. Phys. A : Math.
Gen., 38 (16),
3483-3503
(2005)
F. Vermet, Phase
transition and law of large numbers for a
non-symmetric one-dimensional random walk with self-interactions.
J.
Appl. Prob., 35, 55-63 (1998).
F. Vermet,
Transition de phase et vitesse de fuite pour une mesure
discrète de Edwards non symétrique sur Z.
(French) [Phase transition and escape speed for a nonsymmetric discrete
Edwards measure on Z] C. R. Acad. Sci. Paris Sér. I
Math.
322 (1996), no. 6, 567-570 (1996)
F. Vermet,
Discrétisation d'une
équation différentielle stochastique dont les
coefficients ne dépendent pas du temps et calcul
approché d'espérances de fonctionnelles de la
solution. (French) [Discretization of a stochastic
differential
equation whose coefficients are not time-dependent, and rough estimate
of the expectations of functionals of the solution] Fascicule de
probabilités, 65 pp., Publ. Inst. Rech. Math. Rennes, Univ.
Rennes I, Rennes (1992).
F. Vermet, Convergence
de la variance de l'énergie
libre pour le modèle de Hopfield. (French)
[Convergence of
the variance of the free energy in the Hopfield model] C. R. Acad. Sci.
Paris Sér. I Math. 315 (1992), no. 9, 1001-1004 (1992)
Books :
E. Berthelé, R. Billot, C. Bothorel, M. Habart,
J. Janssen, Ph. Lenca, F. Picard, G.
Saporta, F. Vermet, Le big data
pour les compagnies d'assurance. (French), ISTE Editions, 2017 (ISTE)
E. Berthelé, R. Billot, C. Bothorel, M. Habart,
J. Janssen, Ph. Lenca, F. Picard, G.
Saporta, F. Vermet, Big Data for
Insurance companies. ISTE Editions, 2018 (ISTE)
Teaching Supports :
K. Traoré, F. Vermet, Méthodes
de provisionnement stochastique. (French), 2017 (Euria-Lab)
F. Vermet, Introduction à la
simulation stochastique. (French), 2017 (pdf)
Habilitation à Diriger des Recherches :
Etude probabiliste de modèles
neuronaux de mémoire associative et d'algorithmes utilisés en physique
statistique et data science. (pdf)
Université de Bretagne Occidentale, Brest, France (2019)
Ph. D. Thesis :
Etude asymptotique d'un
réseau neuronal : le modèle de mémoire
associative de Hopfield.
Université de Rennes 1, France (1994)
http://tel.archives-ouvertes.fr/tel-00598243/fr/
July 20,
2021.